Miniaturized BeO-OSL detectors for dosimetry in cell cultures and organisms: Applicability and challenges

Diploma thesis Michael Anders, Radiation Physics Group TU Dresden, October 2009

- 1. About the problem
- 2. Dosimetry with the probe method
- 3. The dosimetry system
- 4. Applicability in different environments
- 5. Effects of modifying the dosimetry system
- 6. Further results and outlook

Advantages of small dosimeters:

- allow dose measurements at one defined point, also in very inhomogenous environments
- smaller perturbation of the radiation field (and of the dose distribution)
- match the typical size of cell cultures and small organisms ($\leq 1 \text{ mm}$)

But:

- small detectors are difficult to handle and probably also to find after application in an organism
- detectors have to remain inert in biological environments
- new questions about the analyzation method (a very low signal level is expected)

Almost impossible to get a dose value directly from biological tissue (e.g. by analyzing damaged proteins, chemical changes or increased temperature).

→ Idea: Replace local tissue with a material, where an easy measurable value is proportional to the applied dose

Examples: - increasing optical density of a film

- light emitted by scintillating materials
- luminescence light of materials like LiF, Al₂O₃, BeO
- electric current in an ionisation chamber

But: Probe material has different interaction with radiation field because of different interaction coefficients

 \rightarrow leads to different dose values!

Possible solution: Theory of ideal probes – avoiding or keeping the dose gradient outside the probe

Equilibrium probes: - shouldn't affect the primary radiation field noticeably (have to be small!)

- require a secondary electron equilibrium within the whole probe volume
- only the field of primary photons determine the energy dose

Equilibrium probes are not usable for electron radiation, but are very good photon dose detectors.

How to provide a secondary electron equilibrium within the whole probe volume?

- Find an equivalent probe wall material!

Diploma thesis

How to calculate the energy dose value in the original material?

Same radiation field – same fluence, different interaction coefficients lead to

$$D_{\rm B} = \frac{\left(\overline{\mu}_{\rm tr} / \rho\right)_{\rm B}}{\left(\overline{\mu}_{\rm tr} / \rho\right)_{\rm A}} D_{\rm A}$$

 $(D_A \text{ is the probe dose value})$

Similar approach for electron radiation (Bragg-Gray-Theory)

- thin probes to avoid affection of primary electron field
- very thin wall to keep secondary generation electrons out
- \rightarrow Probe is a pure electron dose detector, then:

$$D_{\mathrm{B}} = rac{\left(\overline{S}/
ho
ight)_{\mathrm{B}}^{\mathrm{col}}}{\left(\overline{S}/
ho
ight)_{\mathrm{A}}^{\mathrm{col}}} D_{\mathrm{A}}$$

to be tested: miniaturized BeO-detectors (1 mm height and diameter)

- sintered from BeO powder
- density about 2.85 g/cm³
- very stable and hard (9 at Mohs scale)
- insoluble in water
- melting point about 2530 °C
- electric isolator
- effective atomic number of 7.12
- have property of optical stimulated luminescence

Diploma thesis

Need for specific calibration in some radiation fields because detectors won't be ideal probes!

Diploma thesis

Why can BeO be used as dosimetric detector material?

- property of optically stimulated luminescence (OSL)
 with a dose proportional measurement effect
- easy measurable value (UV light emission)
- material is reusable many times after deleting the energy dose
- effective atomic number of 7.12 is similar to effective atomic numbers of biological materials
 muscle: 7.64 water: 7.51 adipose: 6.46 air: 7.78

Optically stimulated luminescence:

Lattice defects and impurities produce additional energy levels, some of them with very long electron storage periods.

How to collect the emitted light?

BeOmax

BeO*max* system, developed at the Radiation Physics Group

Diploma thesis

Diploma thesis

Michael Anders, Radiation Physics Group, TU Dresden, October 2009

15/28

Problem: background signal – sources:

- changing preamplifier offset
- preamplifier noise
- background radiation
- \rightarrow leads to a lowest measurable dose of 0.4 mGy (100 measurements of the background effect)

Problem: every BeO detector has its own sensitivity \rightarrow every detector has to be calibrated individually

Problem: short-time fading after irradiation (10% within 30 minutes)

→ detectors have to remain in a dark environment between irradiation and measurement

Diploma thesis

Detectors have to remain inert in:

- water and aqueous solutions
- acids and bases
- organic solvents
- bodily liquids
- culture mediums used for cell growth

Results after treatment of detectors with a lot of substances: Detectors are inert, even in hot concentrated acids (except hydroflouric acid) and don't change their sensitivity.

Test for applicability in radioactive solutions:

Irradiation of detectors in 90 ml of a solution containing 1 GBq of ⁹⁰Y

Diploma thesis

Increasing detector dose because of detector surface contamination!

Diploma thesis

1. Decreasing detector size

BeO powder is highly cancerogen when inhalated!

→ Grinding of the detectors to reduce their size must be done under safety precautions!

Partner: Karlsruhe Beryllium Handling Facility

Effects of modifying the dosimetry system

Result:

- reduced height of about 57%
- slightly increased lowest measurable dose (0.6 mGy)
- very difficult to handle

2. Changing surrounding material during measurement

When using aluminium, only the bottom of the detector is stimulated \rightarrow An opaque material allows additional stimulation of the detector side

Aluminium and Optisol, an opaque Teflon-based polymer

Diploma thesis

Effects of modifying the dosimetry system

- Result: increased sensitivity (about 50%)
 - decreased lowest measurable dose (below 0.3 mGy)
 - improved measurement repeatability

Diploma thesis

Further results and outlook

Diploma thesis

Further results and outlook

Dose characteristic: beta irradiation (⁹⁰Y)

- Done: characterisation of the dosimetry system consisting of miniaturised BeO-detectors and the BeO*max* device
 - detectors can be used in biological and radioactive environments
 - knowledge about application and reusability
 - link to dosimetry theory to avoid wrong dose values
- To do: using a photon counter instead of a photo multiplier tube to improve sensitivity and to decrease the lowest measurable dose
 - improved stimulation unit
 - effects of an even further miniaturisation?
 - research on use of the detectors in bright environments

Thank you for your attention!

Diploma thesis

aboratory Underground Nuclear Astrophysics

The LUNA experiment at the Gran Sasso Laboratory in Italy

Michael Anders

Forschungszentrum Dresden-Rossendorf

Nuclear Astrophysics research at LNGS

LUNA...

- ... is a collaboration of several institutions in Italy, Germany and Hungary (about 25 people)
- ... is the world's only deep underground experiment using an accelerator
- ... has successfully measured data of important reactions of primordial and nucleosynthesis in stars
- ... uses now a 400 kV linear ion accelerator

"My" experiment is the ${}_{1}^{2}H + {}_{2}^{4}He \rightarrow {}_{3}^{6}Li + \gamma$ reaction...

The challenges of Nuclear Astrophysics

...at energies below the Coulomb barrier, so with very low cross sections. Measuring them is sometimes like...

The LUNA 400 kV accelerator

The shielded gas target setup

Michael Anders • Forschungszentrum Dresden-Rossendorf • www.fzd.de • July 22nd 2010

Thank you again for your attention!